SGLang:
Efficient Execution of Structured
Language Model Programs:

Paper’s Authors: Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, lon Stoica, Joseph E. Gonzalez, Clark Barrett, Ying Sheng

Presentation by: Anay Bhakat

Context

e What are Language Models(LMs)?
o Simply put, they are the programmatic usage of LLMs
o 2 common properties:
m Contain multiple LLM calls in their control flow
m Receive structured input and produce structured outputs
e Issueswith LMs
o Tedious and difficult to program due to “not deterministic nature”
o Executing LMs is inefficient due to redundant computation and unoptimized memory usage

What is SGLang?

e SGLang: Structured Generation Language for LLMs
o 2 Maincomponents
m Front-End to simplify the programming of LMs
m Backend improvement through runtime optimizations

SGLang Client (Frontend) SGLang Runtime (Backend)
Language primitives (Sec. 2) Optimizations: RadixAttention (Sec. 3), Compressed finite

state machines (Sec. 4), API speculative execution (Sec. 5)

Figure 1: System architecture: An interpreter executes language primitives with optimized runtime.

Components of SGLang

Frontend

e Domain Specific Language Embedded in Python
o Primitives for Generation:
m eXx)extend, Gen, select
o Primitives For Parallelism Control:
m ex)Fork, Join
e User-Friendly Abstraction to simplify interaction with LLMs

Backend

e 2 Main Components:

O Interpreter and Compiler
e Handles:
o Efficient program execution
o Parallelism
o Memory Management
o Asynchronous Tasks

Interpreter

e Real-time execution engine:
o Executesthe code

e Manages prompt state as a stream:
o Submits operations for asynchronous execution

Compiler

e Optimizes the program before execution:

o Converts the program into a computational graph

o Focuses onimproving efficiency by identifying redundancies as well as opportunities for parallelism
e Benefits:

o Parallelization of independent tasks

o Memory Optimization

o Optimizes for hardware and APl only models

How the Optimizations Work

Radix Attention

Radix Attention

e Goal: Maximize cache reuse and minimize redundant computations when handling
multiple requests.

e Strategy: Use aradix tree to manage shared prefixes and a DFS-based scheduling for
optimal cache usage.

KV Cache and Radix Tree

KV Cache:

e Intermediate tensors generated during LLM inference are stored as key-value (KV) pairs.
e The KV cache depends on the prefix tokens of each request.

e Reuse: Requests with the same prefix can reuse the KV cache.

e Eviction Policy: LRU

Radix Tree:
e Efficient structure for managing shared prefixes across requests.

o Space Efficient compared to a simple trie along with extended labeling capabilities allowing for increased efficiency
e Nodes represent sequences of tokens, allowing efficient KV cache reuse

@3)

You are a helpful assistant.
User: Hello!
Assistant: Hi!

User: Hello!
Assistant: Hil

You are a helpful assistant.

(5)

User: What can you do?
Assistant: | can ...

User: Hello!
Assistant: Hil

User: Hello!
Assistant: Hil

You are a helpful assistant.

User: What can you do?
Assistant: | can ...

User: Solve this problem ...
Assistant:surel.... User: Solve this question... it User: Write a story ...
Assistant: Sure! ... Assistant: Sure! ...
X
(6) (7)
Question 1: ... Question 1: ...
You are a helpful assistant. Answer 1: ... You are a helpful assistant. Answer 1: ...
Question 2: ... Question 2: ...
Answer 2:... Answer 2:...
User: Hello! User: What can you do? Question 3: .. User: Hello! User: What can you do? Question 3:
Assistant: Hi! [Assistant: | can ... Answer 3: .. Assistant: Hi! | Assistant: | can ...
[']
-]
User: Write a story ... User: Write a story ... What ... When ... How ...
Assistant: Sure! ... Assistant: Sure! ... Answer 3:... |Answer3:... |Answer3:..
(8) (9)
Question 1: ... Question 1: ...
You are a helpful assistant. Answer 1: ... You are a helpful assistant. | Answer 1: ...
7777777777777777777 Question 2: ... Question 2: ...
Answer 2:... Answer 2:...
User: Hello! dicted Question 3: User: Hello! Question 3:
evicte
Assistant: Hi! AssistantHil! 2 @®m
i il
e 4 [:_J What ... = wd BB
User: Solve this question... What ... When ... How ... i Answer3: L) evicte e
Assistant: Sure! ... Answer 3:... |Answer3:.. |Answer3:... evicted L}
User: How about ..? oS = £ia
X [D X This is ... Letus... We can . To solve ...

Assistant: Itis a ...

Prompt 1 [Few-shot examples]—-{ Question 1]—{ Answer 1]
Prompt 2 [Few-shot examples]—{ Question 2]——{ Answer 2]
Prompt 3 [Few-shot examples]—{ Question 3 }—{ Answer 3]

(a) Few-shot learning

Branch 1][Branch 1]

Search History] [Branch 1.1] [Branch 1.1]

Generation 1 Search History][Branch 1.1.1][Branch 1.1.1]
]

Prompt [Question 4 Generation 2 Search History][Branch 1.2][Branch 1.2]
Generation 3 ‘ Search History] ((Branch 1.2.1][Branch 1.2.1 |

(b) Self-consistency w

Branch 2][Branch 2]

(rum1(@] [um1)) searchHistory | Branch 2.1 [Branch 2.1 |

(Chat History) (2@] [Turn20a) Search History) (Branch 2.1.1] Branch 2.1.1]

(Chat History) (3@] Tum3a) | Search History)((ranch 2.2][sranch 2.2]

(Chat History) (rurma(@) (Tuma) Search History J((Branch 2.2.1) Branch 2.2.1
(c) Multi-turn chat (d) Tree-of-thought

Figure 9: KV cache sharing examples. Blue boxes represent shareable prompt parts, green boxes
indicate non-shareable parts and yellow boxes mark non-shareable model outputs. Shareable elements
include few-shot learning examples, questions in self-consistency [53], chat history in multi-turn
chat, and search history in tree-of-thought [56].

Pseudocode for Cache Aware Scheduling

Algorithm 1 Cache-Aware Scheduling for RadixAttention with Continuous Batching.

Input: The radix tree T, the memory pool P, the current running batch B, the waiting queue Q.
Output: Finished requests and updated system state.
// Get all requests from the waiting queue
requests + Q.get_all_requests()
o oy J/ Search for the prefix matching for all waiting requests
Retrieve Requests form the Waiting Queue
req.prefiz_node, req.pre fiz_len + T.match_prefix(req.input_tokens)
end for

M a t C h P reﬁ Xes ’r’ef,Z'é 3:::2?;—,“ according to the matched prefix lenghts

/1 Select requests for the next batch

Sort Requests by Matched Prefix Length avallts us Hiwleable 1Pl

new_batch + [|
fo de
Select Requests for the Next Batch e B e e < ol s
new_batch.append(req)
E H t d A” t M delta « T.increase_ref_counter(req.pre fiz_node)
ilabl vailabl i. delt
Vvict an ocate Memory ez auailabe. iz + dela
end for
i batch
Run the batch Gremoe rawstrcuat)
B.merge(new_batch)

AT /1 Allocate new memory and do eviction if necess:
Process Finished Requests iyl it .
success, buf fer « P.alloc(needed_size)
if not success then
T.eviel(needed_size)
success, buf fer < Palloc(needed_size)

Jeusebhe

en

B.run(buf fer)

/1 Process finished requests

finished_requests + B.drop_finished_requests()

for req € finished_requests do
T.decrease_ref_counter(req.pre fiz_node)
T.insert(req)

end for

return finished_requests

Computational Complexity(C) (' > Z le].
ecedges(T)

Variables:

° T: The radix tree of all requests in the batch.
° e: Each edge in the radix tree corresponds to a shared prefix between requests.
° |e|: The size of the KV cache associated with each edge.

Explanation:

° The total computation for processing all requests is at least equal to the sum of all KV cache sizes associated with the shared prefixes in

the radix tree.
° Significance: Each shared prefix must be computed at least once, but by sharing the cache, we can avoid redundant computations.

The cache hit rate, defined as

Cache H it Rate Zre humber of cached prefill tokens in r

Ere g humber of prefill tokens in r

C
re g umber of prefill tokens *

equals 1 — 5= reaches its upper bound, delivering optimality.

Explanation:

° Numerator: Total number of tokens that can be directly retrieved from the cache (without recomputation).
° Denominator: Total number of tokens across all requests in the batch.

Interpretation:

e The higher the cache hit rate the less redundant computation is required.
e Anoptimal cache hit rate means most tokens can be fetched from the cache, minimizing the need for recomputation.

DFS Order for Optimal Cache Usage

e Main Point from Theorem 3.1:
o Processing requests in DFS Order on radix tree helps ensure optimal cache reuse
e Reason for using DFS:
o When you process the longest shared prefix first, all requests that share this prefix will hit the cache
continuously until the entire subtree has been processed.
o This guarantees continuous cache hits and minimizes recomputation because no prefix needs to be
recomputed until all results sharing the prefix are processed

Optimal cache hit rate

o Goal:

o We achieve this bound when each shared prefix is computed only once and the cache is reused for all
requests that require it
e DFSOrder:
o Helps ensure that shared prefixes are processed together, keeping the cache active and minimizing

recomputation.

ecedges(T)

Compressed FSM

Optimization 2

Compressed FSM

® Goal: Speed up structured output decoding (e.g., JSON).
e Strategy: Use a compressed FSM to “batch” decode tokens to reduce number of decision points
e Benefits:

o Increased Decoding Speed

o Reduced Latency and Increased Throughput

o Accuracy, Flexibility, and Optimized for generating structured output

(Jrsmstate [Token () uMdecode
{ =" W . L
TR EEEE

(a) Normal FSM for regex {"summary": " (b) Compressed FSM for regex {"summary™: "
()) Coommary) (am) ()~ (7)(um) () Cammany)}- () (2)-(um)

(c) Decoding process with normal FSM (d) Decoding process with compressed FSM

Please fill in the following
information about Harry Potter.

{

Please fill in the following { H Pot t
information about Harry Potter. ————_name®s " ar ry = er
ryffindor",
S Yaget in === S thoused & }

Jump-Forward Decode With Compressed FSM

|
1
|
I
1
|
1
|

Please fill in the following F*[}_+ }__’{ }_‘[]__+]__’[“ I

information about Harry Potter. \n = dane : | i . i
| Please fill in the following
|
1
I
|
I
|
|
1
1

"name": "Harry",

"age": 15,

"house": "Gryffindor"
}

FEEE0 0S8 E88EE] T
R B O
LRURTR gy o

"age": 15,
"house": "Gryffindor"
Normal Decode With FSM () ump-Forward Generated JSONs
Figure 11: Comparison of decoding using Compressed FSM versus normal FSM: The left subfigure

depicts the decoding process per forward pass, while the right subfigure explains the origins of various
result components.

}

Efficient Endpoint Calling
with API Speculation
Execution

Optimization 3

API Speculative Execution

e Goal:
o Optimize multi-call programs using API-only models
e Strategy:

o Use speculative execution by generating additional tokens beyond condition and matching later
e Benefits:
o Reduced API call latency as well as input token costs

How this works

e Example: pattern: s += context + "name:" + gen("name", stop="\n") + "job:" + gen("job", stop="\n")
o Aprogram asks the model to generate description of a character with a multiple call pattern
e “Speculative Execution”
o Modelignores the stop and allows the model to generate a few extra tokens past the stop condition
o These tokens are kept by the interpreter
o If the model generates “job” in the first part, you save an additional api call

Programming Example

@function
def multi_dimensional_judge(s, path, essay):

s += system("Evaluate an essay about an image.") Handle chat templat
andle chat template

s += user(image(path) + "Essay:" + essay) . .

s += assistant("Sure!") and multi-modal inputs
Return directly if it is not related Select an option with

s += user("Is the essay related to the image?") the highest probability
S += 3551stanf(se1eft(:r'elated", choices=["yes", "no"])) Fetch result; Use Python
if s["related"] == "no": return control flow

Judge multiple dimensions in parallel
forks = s.fork(len(dimensions))
for f, dim in zip(forks, dimensions):
f += user("Evaluate based on the following dimension:" +
dim + ". End your judgment with the word 'END'")
f += assistant("Judgment:" + gen("judgment", stop="END"))

Runtime optimization:
KV Cache Reuse (Sec. 3)

Multiple generation

calls run in parallel
Merge the judgments

judgment = "\n".join(f["judgment"] for f in forks) Fetch generation results

Generate a summary and a grade. Return in the JSON format.

s += user("Provide the judgment, summary, and a letter grade")

s += assistant(judgment + "In summary," + gen("summary", stop=".")
+ "The grade of it is" + gen("grade"))

schema = r'\{"summary”: "[\w\d\s]+\.", "grade": "[ABCD][+-]?"\}"'
s += user("Return in the JSON format.")
s += assistant(gen("output"”, regex=schema))

Runtime optimization: API
speculative execution (Sec. 5)

Runtime optimization: fast

constrained decoding (Sec. 4)
state = multi_dimensional_judge.run(...)

print(state["output"]) Run an SGLang program

Figure 2: The implementation of a multi-dimensional essay judge in SGLang utilizes the branch-solve-merge
prompting technique [40]. Primitives provided by SGLang are shown in red.

Evaluation Processes

Models Evaluated

Dense Models(Llama-2):
e Llama-2 models ranging from 7B to 70B parameters.
e Testsfocused on LLM inference efficiency across different model sizes.
Sparse Models(Mixtral)
e Asparse model evaluated for performance under SGLang, focusing on how sparsity affects
throughput and latency.
Multi-Modal Models:
e LLaVA (Image): Tested on tasks involving image inputs with language prompts.
e LLaVA-NeXT (Video): Multi-modal model tested for video input tasks.
API-Access Models(OpenAl GPT-3.5):
e Evaluated for black-box APl access, focusing on optimizing API call efficiency and speculative
execution for reducing latency and token usage.

Hardware

AWS EC2 Instances:

e G5lInstances with NVIDIA A10G GPUs.
e Additional experiments on A100G GPUs for higher-end tasks.
e Optimized for large-scale model inference and high-throughput workloads.

GPU Selection:

e NVIDIAA10G(24GB) GPUs:

o Designed for both inference and graphics-intensive workloads, balancing cost and performance

e NVIDIAA100(80GB) GPUs:

o Designed for deep learning and large model training

Baselines

SGLang was compared with state of the art baselines to showcase its performance

1. vLLM:
o A high-throughput inference engine designed to maximize the efficiency of large language model (LLM) inference.
o Uses KV cache management to improve performance.

2. Guidance:

o A programming system built to facilitate prompting for LLMs.
o The evaluation uses the llama.cpp backend for this baseline.

3. LMQL.:
o A query language designed to improve the prompting process of LLMs.
o Uses Hugging Face’s Transformers backend for evaluation.

4, OpenAl GPT-3.5:
o Evaluated as a black-box APl model.

o This serves as a baseline for models where APl access is the only interaction point, without internal optimizations.

Metrics

e Throughput:
o Runalarge batch of program instances
o Compute maximum throughput number of program instances per second
o Unit: programs per second(p/s)
e Latency:
o Singular program executed without batching and average latency for multiple instances is reported

Findings

Results on open weight models

SGLang Improvements:
e Improved throughput by upto
6.4x

® I m p rOved Iate n Cy by u pto 3.7X ’ MMLU ReAct Generative Treeof Skeleton LLM Judge HellaSwag JSON Multi-Turn Multi-Turn DSPy RAG

Agents Agents Thought of Thought Decoding Chat(short) Chat(long) Pipeline

Figure 5: Normalized throughput on Llama-7B models. Higher is better.

. SGLang s vLLM B Guidance B LMQL

Throughput
(Normalized)
oo oo
ol U ®o

W SGlLang s vLLM BN Guidance s LMQL

Latency
(Normalized)
O O O O =
oN U oo

MMLU ReAct Generative Tree of Skeleton LLM Judge HellaSwag JSON Multi-Turn Multi-Turn DSPy RAG
Agents Agents Thought of Thought Decoding Chat(short) Chat(long) Pipeline

Figure 6: Normalized latency on Llama-7B models. Lower is better.

Speedup on Large Models with Tensor Parallelism

e Good speedup and throughput

- SGlang s vLLM
o510
3gos
on large models as well 2805
‘.:_Ego.z
0.0

MMLU ReAct Generative Tree of Skeleton LLM Judge HellaSwag JSON Multi-Turn Multi-Turn DSPy RAG
Agents Agents Thought of Thought Decoding Chat(short) Chat(long) Pipeline

Figure 7: Normalized throughput on Mixtral-8x7B models with tensor parallelism. Higher is better.

I SGlang s vLLM

Throughput
(Normalized)
o O O O
o U ®o

MMLU ReAct Generative Tree of Skeleton LLM Judge HellaSwag JSON Multi-Turn Multi-Turn DSPy RAG
Agents Agents Thought of Thought Decoding Chat(short) Chat(long) Pipeline

Figure 12: Normalized throughput on Llama-2-70B models with tensor parallelism. Higher is better.

Performance for LLaVa Video and Image Models

Table 2: Throughput comparison on multi-modal LLaVA image and video models.

Model LLaVA-v1.5-7B (image) LLaVA-NeXT-34B (video)
Author’s original implementation 0.18 image/s 0.02 frame/s
SGLang 1.15 image/s 0.10 frame/s
X No Cache Bm Random Schedule No Frontend Hint
— Batch Size - T?tal Latency (=) BN No Tree Structure W No Frontend Parallelism | Full Optimization
——— Throughput (tokens / s) —— First Token Latency (s) B FCFS Schedule
e 400 =5 100
ok 20 30
40 =N 0.75
/ 0.8l 300 oO®
] = 0.50
301 0.6k 200 10 o E
£ 6025
| 0.4k "EOOO
0 20 40 60 80 100 0 20 40 60 80 100 ' LLM Judge Tree of MMLU Multi-Turn
Cache H(It ;Rate (%) Cache H(lE);Rate (%) Thought() Chat(short)
a

Figure 8: (a)(b) Cache hit rate ablation study. (c) RadixAttention ablation study.

Production Deployment Testing

e Deployedin Chatbot arena to “serve” open-weight models
o 52.4% Radix Attention cache hit rate for LLaVa-Next-34B
o 74.1% hit rate for Vicuna-33B
m Reduces first-token latency by ~1.7x

Related Work + My Opinions

Related Work

e Multiple papers have used/considered KV cache however thai paper was the first to use KV cache

as atree based LRU cache
e Work’s differentiators are in the novel runtime optimizations and is compatible with other

frameworks and inference optimizations

My Take

Radix Attention is very novel and using SGLang to simplify interfacing with models is very novel
Improving cache efficiency and getting rid of redundant computations is huge
e Asystem that actually focuses on improving the experience when using black boxed APlIs like GPT

is super useful
e Thecodeis public so developers can experiment and create their own features on top of SGLang

Thanks For Listening

Citation(all images are from the paper)

° Zheng, Lianmin, et al. "Efficiently programming large language models using sglang." arXiv preprint arXiv:2312.07104 (2023).

