SGLang: Efficient Execution of Structured Language Model Programs:

Paper's Authors: Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, Ying Sheng

Presentation by: Anay Bhakat

Context

- What are Language Models(LMs)?
	- Simply put, they are the programmatic usage of LLMs
	- 2 common properties:
		- Contain multiple LLM calls in their control flow
		- Receive structured input and produce structured outputs
- Issues with LMs
	- Tedious and difficult to program due to "not deterministic nature"
	- Executing LMs is inefficient due to redundant computation and unoptimized memory usage

What is SGLang?

- SGLang: Structured Generation Language for LLMs
	- 2 Main components
		- Front-End to simplify the programming of LMs
		- Backend improvement through runtime optimizations

Figure 1: System architecture: An interpreter executes language primitives with optimized runtime.

Components of SGLang

Frontend

- Domain Specific Language Embedded in Python
	- Primitives for Generation:
		- ex) extend, Gen, select
	- Primitives For Parallelism Control:
		- ex) Fork, Join
- User-Friendly Abstraction to simplify interaction with LLMs

Backend

- 2 Main Components:
	- Interpreter and Compiler
- Handles:
	- Efficient program execution
	- Parallelism
	- Memory Management
	- Asynchronous Tasks

Interpreter

- Real-time execution engine:
	- Executes the code
- Manages prompt state as a stream:
	- Submits operations for asynchronous execution

Compiler

- Optimizes the program before execution:
	- Converts the program into a computational graph
	- Focuses on improving efficiency by identifying redundancies as well as opportunities for parallelism
- Benefits:
	- Parallelization of independent tasks
	- Memory Optimization
	- Optimizes for hardware and API only models

How the Optimizations Work

Radix Attention

Optimization 1

Radix Attention

- **Goal**: Maximize cache reuse and minimize redundant computations when handling multiple requests.
- **Strategy**: Use a **radix tree** to manage shared prefixes and a **DFS-based scheduling** for optimal cache usage.

KV Cache and Radix Tree

KV Cache:

- Intermediate tensors generated during LLM inference are stored as **key-value (KV) pairs**.
- The **KV cache** depends on the prefix tokens of each request.
- **Reuse**: Requests with the same prefix can reuse the KV cache.
- **Eviction Policy: LRU**

Radix Tree:

- Efficient structure for managing shared prefixes across requests.
	- Space Efficient compared to a simple trie along with extended labeling capabilities allowing for increased efficiency
- Nodes represent sequences of tokens, allowing efficient KV cache reuse

Figure 9: KV cache sharing examples. Blue boxes represent shareable prompt parts, green boxes indicate non-shareable parts and yellow boxes mark non-shareable model outputs. Shareable elements include few-shot learning examples, questions in self-consistency [53], chat history in multi-turn chat, and search history in tree-of-thought $[56]$.

Pseudocode for Cache Aware Scheduling

- 1) Retrieve Requests form the Waiting Queue
- 2) Match Prefixes
- 3) Sort Requests by Matched Prefix Length
- 4) Select Requests for the Next Batch
- 5) Evict and Allocate Memory
- 6) Run the batch
- 7) Process Finished Requests

Algorithm 1 Cache-Aware Scheduling for RadixAttention with Continuous Batching.

Input: The radix tree T, the memory pool P, the current running batch B , the waiting queue O . Output: Finished requests and updated system state. // Get all requests from the waiting queue $requests \leftarrow Q.get_all_request)$ // Search for the prefix matching for all waiting requests for $req \in requests$ do $req.prefix_node,req.prefix_len \leftarrow T.\text{match_prefix}(req.input_tokens)$ end for // Sort the requests according to the matched prefix lenghts $requests.sort()$ // Select requests for the next batch *available size* \leftarrow *T*.evictable size() + *P*.available size() $current size \leftarrow 0$ new batch \leftarrow fl for $req \in requests$ do **if** $rea.size() + current \; size < available \; size$ then new batch.append (req) $delta \leftarrow T.\text{increase_ref_counter}(\text{req}.\text{prefix_node})$ $available_size \leftarrow available_size + delta$ end if end for Q .remove requests $(new batch)$ // Insert requests into the current running batch B .merge (new_batch) // Allocate new memory and do eviction if necessary $needed \; size \leftarrow B \text{.needed} \; size()$ $success, buffer \leftarrow P. \text{alloc}(needed_size)$ if not success then T.evict(needed_size) $success, buffer \leftarrow P. \text{alloc}(needed_size)$ end if $B.\text{run}(buffer)$ // Process finished requests $f inside_requests \leftarrow B.drop_finished_requests()$ for $req \in finished\ requests$ do T.decrease_ref_counter(req.prefix_node) $T.insert(req)$ end for return finished_requests

Computational Complexity(C)

Variables:

- *T:* The radix tree of all requests in the batch.
- e: Each edge in the radix tree corresponds to a shared prefix between requests.
- |e|: The size of the **KV cache** associated with each edge.

Explanation:

- **●** The **total computation** for processing all requests is at least equal to the sum of all KV cache sizes associated with the shared prefixes in the radix tree.
- Significance: Each shared prefix must be computed **at least once**, but by sharing the cache, we can avoid redundant computations.

The cache hit rate, defined as

Cache Hit Rate

 $\frac{\sum_{r \in R}$ number of cached prefill tokens in r
 $\sum_{r \in R}$ number of prefill tokens in r

equals $1 - \frac{C}{\sum_{r \in R}$ number of prefill tokens, reaches its upper bound, delivering optimality.

Explanation:

- **Numerator**: Total number of tokens that can be directly retrieved from the cache (without recomputation).
- **Denominator**: Total number of tokens across all requests in the batch.

Interpretation:

- The higher the cache hit rate the **less redundant computation** is required.
- An **optimal cache hit rate** means most tokens can be fetched from the cache, minimizing the need for recomputation.

DFS Order for Optimal Cache Usage

- \bullet Main Point from Theorem 3.1:
	- Processing requests in DFS Order on radix tree helps ensure optimal cache reuse
- Reason for using DFS:
	- When you process the **longest shared prefix** first, all requests that share this prefix will hit the cache continuously until the entire subtree has been processed.
	- This guarantees continuous cache hits and minimizes recomputation because no prefix needs to be recomputed until all results sharing the prefix are processed

Optimal cache hit rate

- Goal:
	- We achieve this bound when each shared prefix is computed **only once** and the cache is reused for all requests that require it
- DFS Order:
	- Helps ensure that shared prefixes are processed together, keeping the cache active and minimizing recomputation.

$$
C = \sum_{e \in \operatorname{edges}(T)} |e|.
$$

Compressed FSM

Optimization 2

Compressed FSM

- **Goal**: Speed up structured output decoding (e.g., JSON).
- Strategy: Use a compressed FSM to "batch" decode tokens to reduce number of decision points
- Benefits:
	- Increased Decoding Speed
	- Reduced Latency and Increased Throughput
	- Accuracy, Flexibility, and Optimized for generating structured output

Figure 11: Comparison of decoding using Compressed FSM versus normal FSM: The left subfigure depicts the decoding process per forward pass, while the right subfigure explains the origins of various result components.

Efficient Endpoint Calling with API Speculation Execution

Optimization 3

API Speculative Execution

- Goal:
	- Optimize multi-call programs using API-only models
- Strategy:
	- Use speculative execution by generating additional tokens beyond condition and matching later
- Benefits:
	- Reduced API call latency as well as input token costs

How this works

- Example: pattern: $s +=$ context + "name:" + gen("name", stop="\n") + "job:" + gen("job", stop="\n")
	- \circ A program asks the model to generate description of a character with a multiple call pattern

● "Speculative Execution"

- Model ignores the stop and allows the model to generate a few extra tokens past the stop condition
- These tokens are kept by the interpreter
- If the model generates "job" in the first part, you save an additional api call

Programming Example

Figure 2: The implementation of a multi-dimensional essay judge in SGL angutilizes the branch-solve-merge prompting technique [40]. Primitives provided by SGL ang are shown in red.

Evaluation Processes

Models Evaluated

Dense Models(**Llama-2**):

- Llama-2 models ranging from 7B to 70B parameters.
- Tests focused on LLM inference efficiency across different model sizes.

Sparse Models(**Mixtral**)

● A sparse model evaluated for performance under SGLang, focusing on how sparsity affects throughput and latency.

Multi-Modal Models:

- **LLaVA** (Image): Tested on tasks involving image inputs with language prompts.
- **LLaVA-NeXT** (Video): Multi-modal model tested for video input tasks.

API-Access Models(**OpenAI GPT-3.5**):

● Evaluated for black-box API access, focusing on optimizing API call efficiency and speculative execution for reducing latency and token usage.

Hardware

AWS EC2 Instances:

- G5 Instances with NVIDIA A10G GPUs.
● Additional experiments on A100G GPUs
- Additional experiments on A100G GPUs for higher-end tasks.
- Optimized for large-scale model inference and high-throughput workloads.

GPU Selection:

- NVIDIA A10G(24GB) GPUs:
	- Designed for both inference and graphics-intensive workloads, balancing cost and performance
- NVIDIA A100(80GB) GPUs:
	- Designed for deep learning and large model training

Baselines

SGLang was compared with state of the art baselines to showcase its performance

- 1. **vLLM**:
	- A high-throughput inference engine designed to maximize the efficiency of large language model (LLM) inference.
	- Uses KV cache management to improve performance.
- 2. **Guidance**:
	- A programming system built to facilitate prompting for LLMs.
	- The evaluation uses the llama.cpp backend for this baseline.
- 3. **LMQL**:
	- A query language designed to improve the prompting process of LLMs.
	- Uses Hugging Face's Transformers backend for evaluation.
- 4. **OpenAI GPT-3.5**:
	- Evaluated as a black-box API model.
	- This serves as a baseline for models where API access is the only interaction point, without internal optimizations.

Metrics

- Throughput:
	- Run a large batch of program instances
	- Compute maximum throughput number of program instances per second
	- Unit: programs per second(p/s)
- Latency:
	- Singular program executed without batching and average latency for multiple instances is reported

Results on open weight models

SGLang Improvements:

- Improved throughput by upto **6.4x**
- Improved latency by upto **3.7x**

Speedup on Large Models with Tensor Parallelism

• Good speedup and throughput on large models as well

Figure 7: Normalized throughput on Mixtral-8x7B models with tensor parallelism. Higher is better.

Performance for LLaVa Video and Image Models

Table 2: Throughput comparison on multi-modal LLaVA image and video models.

Figure 8: (a)(b) Cache hit rate ablation study. (c) Radix Attention ablation study.

Production Deployment Testing

- Deployed in Chatbot arena to "serve" open-weight models
	- 52.4% Radix Attention cache hit rate for LLaVa-Next-34B
	- 74.1% hit rate for Vicuna-33B
		- Reduces first-token latency by \sim 1.7 x

Related Work + My Opinions

Related Work

- Multiple papers have used/considered KV cache however thai paper was the first to use KV cache as a tree based LRU cache
- Work's differentiators are in the novel runtime optimizations and is compatible with other frameworks and inference optimizations

My Take

- Radix Attention is very novel and using SGLang to simplify interfacing with models is very novel
- Improving cache efficiency and getting rid of redundant computations is huge
- A system that actually focuses on improving the experience when using black boxed APIs like GPT is super useful
- The code is public so developers can experiment and create their own features on top of SGLang

Thanks For Listening

Citation(all images are from the paper)

● Zheng, Lianmin, et al. "Efficiently programming large language models using sglang." *arXiv preprint arXiv:2312.07104* (2023).