
SGLang:
Efficient Execution of Structured
Language Model Programs:
Paper’s Authors: Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, Ying Sheng

Presentation by: Anay Bhakat

Context

● What are Language Models(LMs)?
○ Simply put, they are the programmatic usage of LLMs
○ 2 common properties:

■ Contain multiple LLM calls in their control flow
■ Receive structured input and produce structured outputs

● Issues with LMs
○ Tedious and difficult to program due to “not deterministic nature”
○ Executing LMs is inefficient due to redundant computation and unoptimized memory usage

What is SGLang?

● SGLang: Structured Generation Language for LLMs
○ 2 Main components

■ Front-End to simplify the programming of LMs

■ Backend improvement through runtime optimizations

Components of SGLang

Frontend

● Domain Specific Language Embedded in Python
○ Primitives for Generation:

■ ex) extend, Gen, select

○ Primitives For Parallelism Control:

■ ex) Fork, Join

● User-Friendly Abstraction to simplify interaction with LLMs

Backend

● 2 Main Components:

○ Interpreter and Compiler

● Handles:

○ Efficient program execution

○ Parallelism

○ Memory Management

○ Asynchronous Tasks

Interpreter

● Real-time execution engine:
○ Executes the code

● Manages prompt state as a stream:
○ Submits operations for asynchronous execution

Compiler

● Optimizes the program before execution:
○ Converts the program into a computational graph

○ Focuses on improving efficiency by identifying redundancies as well as opportunities for parallelism

● Benefits:
○ Parallelization of independent tasks

○ Memory Optimization

○ Optimizes for hardware and API only models

How the Optimizations Work

Radix Attention

Optimization 1

Radix Attention

● Goal: Maximize cache reuse and minimize redundant computations when handling

multiple requests.

● Strategy: Use a radix tree to manage shared prefixes and a DFS-based scheduling for

optimal cache usage.

KV Cache and Radix Tree

KV Cache:

● Intermediate tensors generated during LLM inference are stored as key-value (KV) pairs.
● The KV cache depends on the prefix tokens of each request.
● Reuse: Requests with the same prefix can reuse the KV cache.
● Eviction Policy: LRU

Radix Tree:

● Efficient structure for managing shared prefixes across requests.
○ Space Efficient compared to a simple trie along with extended labeling capabilities allowing for increased efficiency

● Nodes represent sequences of tokens, allowing efficient KV cache reuse

Pseudocode for Cache Aware Scheduling

1) Retrieve Requests form the Waiting Queue
2) Match Prefixes
3) Sort Requests by Matched Prefix Length
4) Select Requests for the Next Batch
5) Evict and Allocate Memory
6) Run the batch
7) Process Finished Requests

Computational Complexity(C)

Variables:

● T: The radix tree of all requests in the batch.
● e : Each edge in the radix tree corresponds to a shared prefix between requests.
● |e|: The size of the KV cache associated with each edge.

Explanation:

● The total computation for processing all requests is at least equal to the sum of all KV cache sizes associated with the shared prefixes in
the radix tree.

● Significance: Each shared prefix must be computed at least once, but by sharing the cache, we can avoid redundant computations.

Cache Hit Rate

Explanation:

● Numerator: Total number of tokens that can be directly retrieved from the cache (without recomputation).

● Denominator: Total number of tokens across all requests in the batch.

Interpretation:

● The higher the cache hit rate the less redundant computation is required.

● An optimal cache hit rate means most tokens can be fetched from the cache, minimizing the need for recomputation.

DFS Order for Optimal Cache Usage

● Main Point from Theorem 3.1:
○ Processing requests in DFS Order on radix tree helps ensure optimal cache reuse

● Reason for using DFS:
○ When you process the longest shared prefix first, all requests that share this prefix will hit the cache

continuously until the entire subtree has been processed.

○ This guarantees continuous cache hits and minimizes recomputation because no prefix needs to be

recomputed until all results sharing the prefix are processed

Optimal cache hit rate

● Goal:

○ We achieve this bound when each shared prefix is computed only once and the cache is reused for all

requests that require it

● DFS Order:

○ Helps ensure that shared prefixes are processed together, keeping the cache active and minimizing

recomputation.

Compressed FSM

Optimization 2

Compressed FSM

● Goal: Speed up structured output decoding (e.g., JSON).

● Strategy: Use a compressed FSM to “batch” decode tokens to reduce number of decision points

● Benefits:
○ Increased Decoding Speed

○ Reduced Latency and Increased Throughput

○ Accuracy, Flexibility, and Optimized for generating structured output

Efficient Endpoint Calling
with API Speculation
Execution
Optimization 3

API Speculative Execution

● Goal:
○ Optimize multi-call programs using API-only models

● Strategy:
○ Use speculative execution by generating additional tokens beyond condition and matching later

● Benefits:
○ Reduced API call latency as well as input token costs

How this works

● Example: pattern: s += context + "name:" + gen("name", stop="\n") + "job:" + gen("job", stop="\n")

○ A program asks the model to generate description of a character with a multiple call pattern

● “Speculative Execution”
○ Model ignores the stop and allows the model to generate a few extra tokens past the stop condition

○ These tokens are kept by the interpreter

○ If the model generates “job” in the first part, you save an additional api call

Programming Example

Evaluation Processes

Models Evaluated

Dense Models(Llama-2):
● Llama-2 models ranging from 7B to 70B parameters.
● Tests focused on LLM inference efficiency across different model sizes.

Sparse Models(Mixtral)
● A sparse model evaluated for performance under SGLang, focusing on how sparsity affects

throughput and latency.
Multi-Modal Models:

● LLaVA (Image): Tested on tasks involving image inputs with language prompts.
● LLaVA-NeXT (Video): Multi-modal model tested for video input tasks.

API-Access Models(OpenAI GPT-3.5):
● Evaluated for black-box API access, focusing on optimizing API call efficiency and speculative

execution for reducing latency and token usage.

Hardware

AWS EC2 Instances:

● G5 Instances with NVIDIA A10G GPUs.
● Additional experiments on A100G GPUs for higher-end tasks.
● Optimized for large-scale model inference and high-throughput workloads.

GPU Selection:

● NVIDIA A10G(24GB) GPUs:
○ Designed for both inference and graphics-intensive workloads, balancing cost and performance

● NVIDIA A100(80GB) GPUs:
○ Designed for deep learning and large model training

Baselines

SGLang was compared with state of the art baselines to showcase its performance

1. vLLM:
○ A high-throughput inference engine designed to maximize the efficiency of large language model (LLM) inference.
○ Uses KV cache management to improve performance.

2. Guidance:
○ A programming system built to facilitate prompting for LLMs.
○ The evaluation uses the llama.cpp backend for this baseline.

3. LMQL:
○ A query language designed to improve the prompting process of LLMs.
○ Uses Hugging Face’s Transformers backend for evaluation.

4. OpenAI GPT-3.5:
○ Evaluated as a black-box API model.
○ This serves as a baseline for models where API access is the only interaction point, without internal optimizations.

Metrics

● Throughput:
○ Run a large batch of program instances

○ Compute maximum throughput number of program instances per second

○ Unit: programs per second(p/s)

● Latency:
○ Singular program executed without batching and average latency for multiple instances is reported

Findings

Results on open weight models

SGLang Improvements:
● Improved throughput by upto

6.4x
● Improved latency by upto 3.7x

Speedup on Large Models with Tensor Parallelism

● Good speedup and throughput

on large models as well

Performance for LLaVa Video and Image Models

Production Deployment Testing

● Deployed in Chatbot arena to “serve” open-weight models
○ 52.4% Radix Attention cache hit rate for LLaVa-Next-34B

○ 74.1% hit rate for Vicuna-33B

■ Reduces first-token latency by ~1.7x

Related Work + My Opinions

Related Work

● Multiple papers have used/considered KV cache however thai paper was the first to use KV cache

as a tree based LRU cache

● Work’s differentiators are in the novel runtime optimizations and is compatible with other

frameworks and inference optimizations

My Take

● Radix Attention is very novel and using SGLang to simplify interfacing with models is very novel

● Improving cache efficiency and getting rid of redundant computations is huge

● A system that actually focuses on improving the experience when using black boxed APIs like GPT

is super useful

● The code is public so developers can experiment and create their own features on top of SGLang

Thanks For Listening

Citation(all images are from the paper)

● Zheng, Lianmin, et al. "Efficiently programming large language models using sglang." arXiv preprint arXiv:2312.07104 (2023).

